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In this paper a novel density functional theory code is described that implements
Yang’s divide-and-conquer approach in the framework of the discrete variational
method. The primary aim of the software is the rapid computation of approximate
electron densities and density of states for a given arrangement of atoms. By using
moderately sized grids and compact basis and density fit function sets, a high degree
of efficiency is achieved. Through the use of the example of linear alkane chains,
it is demonstrated that the performance of the method scales linearly with respect
to system size for up to more than 1000 atoms. Details of the implementation are
given where emphasis is placed on the approximations made and how linear scaling
is achieved. Finally, calculations on some example structures will be presented to
survey possible applications of the code.c© 1998 Academic Press
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1. INTRODUCTION

Electronic structure calculations from first principles have come a long way over the past
25 years and are now, for small molecules, almost routine. However, for larger molecules
of 100 atoms and more, the scaling of cpu-time with respect to system size ofO(N3) and
higher makes calculations on such systems prohibitively expensive.

A major breakthrough was achieved when the divide-and-conquer (D&C) philosophy,
used in other areas of computational science (e.g., the eigenvalue problem [1]), was applied
by Yang [2–6] to density functional theory (DFT). By dividing the system into subsystems
for which the Kohn–Sham equations are solved separately, D&C imposes a strict localization
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constraint to the problem which formally reduces theO(N3) scaling associated with the
building and diagonalization of the Hamiltonian matrix intoO(N2) and O(N) scaling
processes, respectively. By further making use of the short-range nature of the exchange–
correlation interaction and the smoothness of the coulomb far-field [7], the Hamiltonian
matrix-build can also be made linearly scaling, such that an overallO(N) scaling DFT
scheme results.

Yang’s practical implementation of this method [2, 3] employs the DMol approach [8] to
solve the subsystem Kohn–Sham equations. Implementations of D&C based on Gaussian-
type orbitals (GTOs) with their advantage of largely analytical integrability are under devel-
opment [9, 10]. Significant progress has also been reported for strategies that are not based
on D&C but use other means of imposing localization [11–16]. Recently, work has been
published which concentrates on making the evaluation of the Hamiltonian matrix elements
a linearly scaling process with the notion that this is the time-critical part in GTO-based
Hartree–Fock and DFT schemes for moderately large system sizes [17–23].

These implementations offer the prospect that accurate single point energy calculations
and possibly geometry optimizations using energy gradients will be possible for large
molecules in much the same way as they are at present for small molecules. However,
in order to obtain reliable energies and gradients, it is paramount that errors arising from
approximations introduced (e.g., in the evaluation of the coulomb potential or in the use of
numerical integration schemes) are reduced to a minimum.

In contrast, if one were to put aside total energies and their gradients as targets of a
calculation, it has been shown that sufficiently accurate electron densities and density of
states (DOS) for direct analysis can be obtained efficiently using the discrete variational
method (DVM) [24–26], namely numerical integration of the Kohn–Sham equations over
moderately sized grids. Such densities (and quantities derived from them) are of course
exceedingly useful in themselves: Concepts introduced and discussed for example by Bader,
Parr, and others [27–30] can be used to assess properties such as the reactivity of the system
under consideration.

The implementation of the D&C DFT approach presented in this work follows the spirit
of DVM in that approximate electron densities for a given system are made the primary
objective of a calculation. The accuracy required for the calculation of molecular energies
will be sacrificed for efficiency and a comparably aggressive level of approximation will be
used while trying to retain meaningful densities and DOSs for direct analysis.

In particular, (1) compact numerical orbital basis sets will be used, (2) a simple hier-
achical model of approximations (controlled by user-defined distance cutoffs) makes the
evaluation of the (Kohn–Sham) effective potential a linearly scaling process, (3) integra-
tion is performed over comparatively coarse numerical grids (<1000 points/atom), and
(4) compact density fit basis sets (generally of s-type functions only) are employed. It will
be demonstrated that such an approach will allow first principles electronic structure calcu-
lations on systems that would otherwise not be accessible by the more accurate approaches
listed above.

The following discussion begins with a summary of Yang’s D&C method, which also
serves the purpose of introducing the terminology used in subsequent sections. Then, the im-
plementation of this method in the framework of the discrete variational method will be intro-
duced. Finally, the performance characteristics of this implementation will be demonstrated
using a variety of example systems, among them a linear alkane of 3002 atoms and a protein
of 845 atoms.
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2. BACKGROUND

In Kohn–Sham density functional theory [30, 31], the electron density is obtained by
solving the one-particle eigenvalue problem in the effective potential

VKS[ρ] = Vnucl+ Vcoul[ρ] + VXC[ρ] (1)

consisting of nuclear, coulombic, and exchange–correlation contributions, respectively. Us-
ing an orbital basis set{χµ}, the density is usually obtained in the form

ρ =
∑
µ

∑
ν

ρµνχµχν, (2)

whereρµν is the density matrix. In practice, for large systems, the computation and general
handling of the density matrix using established methods become prohibitively expensive.
However, this problem can be neatly and efficiently overcome by using Yang’s divide-and-
conquer DFT [2–6]. The essentials of D&C will be summarized in this section but slightly
reformulated to emphasize the role of what will be referred to in the following as the “density
function” of an atom A,ρA(r ; E):

ρA(r ; E) = P̂A ρ(r ; E) =
∑

i

F(E − εi )P̂A|ψi |2. (3)

In this equation,F is the Fermi function at finite temperature;εi andψi are orbital
energies and wavefunctions, respectively; andP̂A is a suitable operator (see below) that
partitions densities into atomic contributions. Thus, for a given, yet to be determined, Fermi
energyE f , ρA(r ; E f ) represents the density associated with atom A. The total density of
the system is then of course the superposition of the densities associated with all atoms:

ρ(r ; E f ) =
∑

A

ρA(r ; E f ). (4)

The divide-and-conquer method is based on the principle thatρA(r ; E), as it would be
obtained for a particular atom A in a Kohn–Sham-type calculation on the entire system,
is well approximated by the atomic density functionραA(r ; E) obtained for the same atom
in a calculation carried out localized to a small “quantum” fragmentα of atoms (in the
following text a superscriptedα signifies a quantity associated with a fragment),

ρA(r ; E) ' ραA(r ; E), (5)

where

ραA(r ; E) = P̂Aρ
α(r ; E) =

∑
i

F(E − εi )P̂A

∣∣ψα
i

∣∣2. (6)

Localization in this context means that the Kohn–Sham equations (for the potential given
in Eq. (1)) are solved using orbital basis functions sited only on a small number of atoms (a
fragment) including atom A and other nearby (buffer [3]) atoms, which yields orbitalsψα

i

and densitiesρα being limited in spatial extent to the fragment. In doing this, the (formally)
O(N3) computational effort in diagonalizing the Hamiltonian matrix of the entire system
is avoided and replaced with the linear scaling problem of diagonalizingN small fragment
matrices.
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Atom A will be referred to in the following as the “reference atom” of the fragment
since its density function is used to approximate the density function of a system atom. The
accuracy of this approximation is determined solely by the size of the fragment, i.e., the
number of buffer atoms used to shield the reference atoms from the surface of the fragment.
Of course, more than one atom in a fragment can serve as a reference for a density function.

With atomic density functions obtained in this way for all atoms and with a known
electron countNe, the Fermi levelE f can be computed by requiring that the total density
(Eq. (4)) integrates toNe; thus∑

A

〈ρA(r, E f )〉 =
∑

A

NA(E f ) = Ne, (7)

whereNA is the number of electrons associated with atom A and the square brackets〈· · ·〉
imply integration over all space. Knowing the Fermi level, the electron densityρ is obtained
by Eq. (4) and a new effective potentialVKS (Eq. (1)) for the system can be constructed;
this completes the SCF cycle in a divide-and-conquer DFT calculation.

It is instructive to remember that earlier embedded cluster schemes are based on this
very same principle of “localization.” In many applications of these methods, the atoms
of a solid are described using a single, suitably chosen fragment of the solid (the cluster)
for which solid-like densities are obtained in the inside. The crystal potential in which the
cluster equations are solved is constructed using the densities of atoms within the cluster as
a reference (e.g., Ref. [32]). Thus one can think of Yang’s D&C approach as a very elegant
extension of the embedded cluster scheme to obtain the density functions for the atoms of
a large system, by simply using several (not just one) small clusters/fragments as sources
of reference for atomic densities.

A short comment on the partition operatorP̂A used in Eq. (3) is in order. Two forms have
been introduced: In the original formulation of D&C [2], a smooth partition functionPA(r )
has been used, while in the later “density matrix” D&C [6], partitioning was based on a
Mulliken-type scheme; the latter will be used here. In principle, the partitioning is arbitrary
and can take any form (as long as

∑
A P̂A= 1). However, the choice affects the quality of

the localizing approximation in Eq. (5) when fragment sizes are smaller.
With the principles of Yang’s D&C DFT summarized, the practicalities of an implemen-

tation using the discrete variational method can be described.

3. IMPLEMENTATION IN THE FRAMEWORK OF THE DVM

In this implementation of divide-and-conquer DFT, calculations on individual frag-
ments are performed using the discrete variational method [24–26]; this part of the present
code thus resembles the original DVM code and the core of the now highly sophisticated
Amsterdam Density Functional (ADF) package [33]. Briefly, all integrations are performed
numerically over a grid of suitably chosen integration points. The densities obtained are
least squares fitted to a set of density fit functions which allows a rapid evaluation of the
coulombic potential [34].

In the following sections, those parts of the DVM that have to be modified to be suitable
and efficient in a D&C calculation on a large system are described. In particular, the efficient
construction of the effective Kohn–Sham potential at fragment integration points and the
density fitting procedure will be discussed.
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3.1. Representation of the Density

First, a suitable representation for the electron density of the entire system is required.
In the original DVM two types of representations are used—first, a density matrix repre-
sentation (Eq. (2)) via the orbital basis set and second, a linear expansion in terms of a set
of density (fit) functions{ fAi } centered on all atoms A [34],

ρ̃ =
∑

A

∑
i

aAi fAi . (8)

As discussed before, the density matrix representation is cumbersome for large systems
and is not really necessary as will become clear later. The density of the entire system
will therefore be represented in the form of Eq. (8) only; this shifts the objective of the
calculation toward the determination of the expansion coefficients{aAi }. In the following
text, symbols for densities in the fit function representation will carry a tilde (e.g., ˜ρ) to
distinguish them from other forms.

The advantage of having the density in the form of Eq. (8) is that the coulomb potential is
straightforwardly accessible using the coulomb potentials of fit functions{Vcoul [ fAi ]} [34]:

Vcoul [ρ̃] =
∑

A

∑
i

aAi Vcoul [ fAi ]. (9)

The coulomb potentials of fit functions are in turn easily computed using one-dimensional
integration [34].

Also it should be noted that in this form, a natural partitioning of the density (and its
coulomb potential) into atomic contributions ( ˜ρA andVcoul[ρ̃A]) is achieved by assigning
to an atom the portion that is described by the fit functions located on it:

ρ̃A =
∑

i

aAi fAi Vcoul[ρ̃A] =
∑

i

aAi Vcoul[ fAi ]. (10)

Through the use of a suitable integration over the atomic densities, partial charges(QA)

and higher multipolar moments can be obtained for all atoms. It should be realized that the
number of electrons(Ñ A=〈ρ̃A〉) assigned to an atom in this way is generally not identical
to that assigned to it as part of the D&C approach(NA(EF ) in Eq. (7)). The equality of
these two charges will become an important constraint later in this discussion.

3.2. Evaluation of the Fragment’s Kohn–Sham Potential

The electron density of the system gives rise to an effective (Kohn–Sham) potential
VKS (Eq. (1)) which has to be evaluated for all fragments employed. However, with the
density and its coulomb potential in the form of Eqs. (8) and (9), this is still anO(N2)

process (the underlying interactions are pairwise) and simplifications are required to make
the computation ofVKS efficient and more favorably scaling with system size.

The evaluation of the Coulomb potential poses particular problems due to its long-range
nature, and (linear scaling) techniques for its accurate evaluation are currently intensely
pursued [7, 17].

In the present method, a comparatively simple (and certainly less accurate) scheme of
approximations depending on the separation of interacting atoms is adopted. However, it is
felt that such an approach is more consistent with the level of approximation made elsewhere
in this implementation (e.g., grid error, basis, and fit set incompleteness).
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A series of truncation radii(RF , RD < RP), defined in the input of the code, partition for
each fragment the atoms of the system into four sets (fragment atoms{F}, diffuse atoms
{D}, point atoms{P}, and “leftovers”{M}—which in the following text are referred to as
multipolar atoms). Increasing levels of approximation are used to evaluate the Kohn–Sham
potentialVKS created by the atoms in these sets which are subsequently combined to give
the total potential

VKS(r ) = V{D,F}(r )+ V{P}(r )+ V{M}(r ). (11)

Fragment atoms{F}. As discussed before, fragment atoms are those atoms that carry
basis functions in a localized quantum calculation. The fragment initially contains only
the atoms that serve as reference atoms for the construction of the system density and is
extended by all atoms that are within a distance ofRF to any of the reference atoms. Yang
[3] refers to the atoms added in this way as “buffer atoms.”

Diffuse atoms{D}. All atoms that are within a distance ofRD of any fragment atom
form the set of diffuse atoms{D}. The atoms of the fragment and diffuse set are represented
as containing a nuclear point charge surrounded by a diffuse cloud of electrons. This elec-
tron density gives rise to an exchange/correlation potential. Hence, the effective potential
(Eq. (1)) due to this subset of atoms is evaluated exactly. An additional approximate po-
tential is introduced to simulate the effect of orbital orthogonality between fragment atoms
and surrounding density. In principle, this can be achieved in a simple way by truncating
the Kohn–Sham potential within a preset radius of the “embedding” diffuse atoms to a
constant potential close to the Fermi level of the system [35]. Here, the electron densities
of the fragment and the diffuse set ( ˜ρ{F} andρ̃{D}) are used to compute the somewhat more
elaborate non-additive kinetic energy potential correctionVTF,nadd[ρ2, ρ1] introduced by
Cortona [36, 37] based on the Thomas–Fermi kinetic energy (TF-KE) functional (see also
Ref. [38] and comment [39]).

The full potential due to fragment and diffuse atoms is thus given by

V{D,F}(r ) =
∑

A∈{D,F}

[
− ZA

|r − r A| + Vcoul[ρ̃A]

]
+ Vxc

[
ρ̃{D} + ρ̃{F}

]+ VTF,nadd
[
ρ̃{F}, ρ̃{D}

]
,

(12)
where

VTF,nadd
[
ρ̃{F}, ρ̃{D}

] = 1

2
(3π2)2/3

[(
ρ̃{F} + ρ̃{D}

)2/3− (ρ̃{F})2/3]
(13)

and

ρ̃{F} =
∑

A∈{F}
ρ̃A ρ̃{D} =

∑
A∈{D}

ρ̃A. (14)

The density and coulomb potential(ρ̃A,Vcoul[ρ̃A]) associated with an atom are given by
their expansions (Eq. (10)) into density fit functions and their potentials, respectively.

Point atoms{P}. Atoms that are at distances betweenRD and RP from any fragment
atom are represented as point atoms. In essence, it is assumed that the electron density
associated with these atoms does not reach the region of the fragment, which means that the
coulomb potential is effectively that of a point multipole. Currently, a further approximation
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is made of retaining only the point charge term in the potential, neglecting higher multipoles.
The potential is then given by

V{P}(r ) = −
∑

A∈{P}

QA

|r − r A| . (15)

Multipolar atoms{M}. The coulombic potential due to all atoms that are at distances
larger thanRP from any fragment atom, and thus not represented in any of the other
atom sets, is assumed to be nearly constant and therefore representable using a truncated
multipolar expansion around a suitable centerr0 of the fragment:

V{M}(|r − r0|, Ä) =
lmax∑
lm

MlmYlm(Ä)|r − r0|l . (16)

The multipolar momentsMml in this expansion are obtained by summation over the
charge weighted contributions of the single atoms. Again, the atoms are assumed to be
point charges:

Mml =
∑

A∈{M}
QAMml,A. (17)

The multipolar momentsMml,A generated by a unit charged atom A aroundr0 are de-
pendent only on the relative position of the atom. They are conveniently computed before
SCF commences. In the case of a periodic system, the crystal (Madelung) potential is also
represented in this form, which results in a set of crystal momentsMxtl

ml,A for each atom in
the asymmetric unit. Currently, moments up tolmax= 2 are used.

In the practical implementation, various function values at integration points, needed in
the evaluation of the effective potential, are computed only once before SCF and stored
on disk. This includes the density fit functionsfAi and their coulomb potentialsVcoul[ fAi ],
unit point charge potentials (for Eq. (15)) as well as the multipolar potential functions
(Ylm|r − r0|l ) for Eq. (16). With these data readily available from disk, the evaluation of the
potential (Eqs. (1) and (11)) in integration points{VKS(ri )} during each SCF cycle proceeds
rapidly. Indeed, the subsequent numerical integration of the potential and the symmetrized
basis functions (also read from disk) over the grid{ri , wi } to form the Hamiltonian

Hα
µν = Tα

µν +
∫

drχµ(r )VKS(r )χν(r )

' Tα
µν +

∑
i

wiχµ(ri )VKS(ri )χν(ri ) (18)

usually dominates this part of the SCF procedure (Tα is the kinetic energy matrix).
Looking at the scaling properties of this part of the method with respect to increasing

system size, it should be noted that above a certain critical system size, the number of
atoms located within any of the three cutoff radii (i.e., atom sets{F}, {D}, {P}) remains
constant. Hence the number of terms to be evaluated for these atoms is constant and the
computational effort of calculating these terms for all fragments becomes linearly scaling.
The only exceptions to this are the terms associated with the “multipolar atoms” outside
the outermost cutoffRP (atom set{M}) whose number increases with system size; thus the
evaluation of this part of the potential (V{M}, specifically the sum in Eq. (17)) for all fragments
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scales quadratically. In principle, this part of the potential can also be made linearly scaling
using a fast multipole approach [7]. However, since the multipolar part of the potential is
calculated rapidly in comparison with the other parts, its quadratic scaling is not expected
to become significant for practical system sizes (see performance discussion below).

3.3. Density Fitting

With the Fermi levelE f computed for the system (Eq. (7)), the density for the entire
system is in principle available via the density functions defined in Eqs. (3) and (4), which
would eventually yield a density matrix representation (Eq. (2)) of the system density [6].
The density expansion coefficients{aAi } of Eq. (8) could then be obtained by least squares
fitting, as is standard practice in the standard DVM [34]. However, such a least squares
fitting approach would result in anO(N3) scaling process (since it requires the inversion
of a O(N) sized matrix) and a linear scaling alternative is required. Using a localization
ansatz similar to the one used in Yang’s D&C, such an alternative has been described by
St. Amant and co-workers [9, 10] for the LCGTO-DFT method [40, 41] and the approach
in the following can to some extent be considered an adaptation to the DVM. However,
unlike St. Amant’s fitting procedure, the present method will not require a density matrix
representation (Eq. (2)) of the entire system density. Instead, fitting will be based only on
the densitiesρα obtained for all the fragments as a result of the D&C method.

This begins with Eq. (8) being least squares fitted to fragment densities,

ρα =
∑

i

f
(
εαi − E f

)∣∣ψα
i

∣∣2, (19)

giving rise to a complete set of fit expansion coefficients{aαAi } for each fragment. Then,
the expansion coefficients found in this way for the reference atoms of a fragment are
taken as approximations for those obtained if the density fit were performed on a globally
represented density. Thus, the approximation Eq. (5) translates into

aAi ' aαAi . (20)

In this way expansion coefficients{aAi } for all atoms of the system can be obtained by
referencing appropriate atoms in the set of fragments.

Because fragment densitiesρα are localized to small regions of the system only fit
functions located on atoms that are either part of or close to the fragment will be significantly
involved in the expansion. Since one is interested only in the expansion coefficients obtained
for reference atoms in the inside of the fragment, it is a reasonable step to truncate the fit
function representation ofρα to involve functions located on fragment atoms only:

ρ̃α =
∑

A∈{F}

∑
i

aαAi fAi . (21)

This truncation results in the number of fit functions involved in a fragment least squares
fit to be (asymptotically) constant with system size, which means that the density fit for all
fragments will be a linearly scaling process.

An important constraint in the fragment fitting procedure is the conservation of charge
for the entire system. This can be conveniently achieved by requiring that the fitted density
associated with a reference atom A ( ˜ρA, Eq. (10)) integrates to the same number of electrons
that has been assigned to it earlier in Eq. (7)—namelyNA(E f ), the integrated atomic density
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function at the Fermi levelE f :〈
ρ̃αA
〉 =∑

i

aαAi 〈 fAi 〉 = NA ∀ A ∈ {R}. (22)

This is achieved by augmenting the least squares fit of Eq. (21) to Eq. (19) for a fragment
by a constraint of the form Eq. (22) for each reference atom defined by it. Non-reference
(buffer) atoms of a fragment are not constrained. The Lagrangian of the least squares fit is
then given by

L = 〈(ρα − ρ̃α)2〉 −
∑

A∈{R}
λA
(〈
ρ̃αA
〉− NA

)
. (23)

Minimization of L for all fragmentsα, which equates to solving a set of linear equations,
yields the expansion coefficients{aαAi } which are used in conjunction with approximation
Eq. (20) to construct the fit function representation of the system density (Eq. (8)).

During the SCF procedure, an updating strategy is required to ensure convergence of the
electron density (i.e., coefficients{aαAi }) to a stationary solution. In this implementation,
the convergence is reached when changes in the density expansion coefficients{aAi } are
below a preset threshold. To accelerate convergence, Pulay’s DIIS [42, 43] extrapolation
procedure is applied to generate updated coefficients for the next cycle.

With this, the core of the present “divide-and-conquer” implementation of the discrete
variational method has been described. In the following section, some of the more practical
aspects are discussed.

3.4. Use of Symmetry

In this implementation of the divide-and-conquer approach, the use of symmetry sets
in at two different levels. First, symmetry in each fragment is used to factorize the Kohn–
Sham matrix equation and to generally reduce the work load as is standard practice in most
quantum chemical codes. More importantly, symmetries in the global system can be used to
much advantage. Because the system density is required to be totally symmetric, the atomic
density of only one atom in a set of symmetry equivalent atoms needs to be computed in a
fragment calculation [5]. The transfer of these densities to symmetry-related sites typically
requires a rotation of the local coordinate system.

To use this symmetry in practice, the only information required in the input is to assign all
atoms to sets of equivalent atoms (referred to as a potential type [32]). The relative orientation
of two atoms in such a set can then be worked out using the position and potential type of their
respective three nearest (nonplanar) neighbors. The specification of the point or space group
of the system and its symmetry operations is not required. This greatly simplifies calculations
on symmetric systems with or without periodicity; a particular advantage is that special
symmetries (e.g., helical geometries) can be used just as easily as any other symmetry.

3.5. Basis Sets

One of the advantages of all-numerical integration schemes is that no restrictions on the
type and shape of basis functions are imposed. Highly compact, yet accurate orbital basis sets
are obtained if they are based on wavefunctions from numerical atomic density functional
calculations [34]. The functions used in the following calculations are generally of valence
double numerical (VDN) type. For core basis functions, the core atomic functions of the
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atom (in its reference state) are used, and for valence basis functions, atomic functions of
the atom in two different oxidation states are used. For atoms such as C, N, O, and S
in covalent environments, these oxidation states are the single positive and negative ions,
respectively. For atoms in ionic environments, e.g., Si in silicates, the basis set is constructed
from atomic functions of the fully(Si4+) and partially(Si2+) ionic atom. Density fit sets
are also based on atomic orbital calculations. Typically, density fit functions are obtained by
taking spherically averaged and squared orbital basis functions for the radial part augmented
with the appropriate spherical harmonic for the angular part.

4. PERFORMANCE

A series of calculations were carried out to establish various performance characteristics
of the code. The example of a linear alkane chain is used to demonstrate that cpu time
and disk usage do indeed scale linearly with system size over a wide range. The effect
of increasing fragment size on computed properties is studied for a solid silicate structure
(Annite). Finally a trial run is presented to compute the electronic structure of the 845 atom
proteinThermotoga maritima1 [Fe4S4] Ferredoxin [45].

4.1. Linear Alkane Chains

To test how the performance of the code scales with system size, a series ofn-alkanes
CnH2n+2 were constructed withn ranging from 2 to 1000. The alkane chains are linearly
stretched in space (all CCCC dihedral angles are 180◦), with bond lengthsd(CC)= 1.54Å
andd(CH)= 1.07Å and anglesα(CCC)= 109.5◦. Although these structures belong to the
C2h or C2v point groups (depending on whethern is even or odd), no use of this symmetry
is made in the following timing calculations to make them representative of similar but less
symmetric systems.

A valence double numerical basis set is used with carbon 1s orbitals kept frozen during
the SCF procedure. The density fit set consists ofs-functions only, based on spherically
averaged squares of selected basis functions. This results in four and two fit functions on C
and H atoms, respectively. The alkanes CnH2n+2 are divided inton fragments, where each
fragment serves as a reference for one carbon atom and the two hydrogen atoms attached
to it. In addition to these reference atoms, the fragment includes the nearest two methylene
groups in each direction as buffer atoms(RF ≈ 6 bohrs). The other truncation radiiRD

and RP (defined in the text above) were set to 10 and 20 bohrs, respectively. With these
parameters, a typical fragment in the center of an alkane contains 15 fragment atoms, 24
diffuse atoms, and 24 point ions. The other atoms of the system are represented using the
multipolar expansion (Eq. (16)) where an upper limitlmax= 2 has been adopted. Here 9989
integration points are used to evaluate the Hamiltonian matrix elements of this fragment.

The timing calculations were performed in single-processor dedicated mode on an SGI
Power Challenge (75-MHz R8000 processors) computer. Generally, the calculations were
not run to full convergence and were stopped after the time was taken for the first SCF cycle.
However, to confirm that the system does converge, alkanes withn= 100, 500 and 1000
were run to full self-consistency (RMS(1aAi )<10−6 and MAX(1aAi )<10−3). For these
examples, no notable effect of system size on the rate of convergence could be detected.
Then= 1000 alkane, for example, met the convergence criterion after 11 cycles.

Selected CPU times and disk space requirements are displayed in Table 1. Average times
per fragment are given in parentheses. The same data are displayed graphically in Fig. 1.
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TABLE 1

CPU Times for (pre-SCF) Setup and One SCF Cycle as well as Disk Space Required for a

Series of Linear Alkanes CnH2n+2 Divided into n Fragments

n Atoms Setup/s SCF-cycle/s Disk/MB

2 8 19 (10) 3 (2) 5 (3)
5 17 123 (25) 19 (4) 35 (7)

10 32 330 (33) 50 (5) 106 (11)
20 62 755 (38) 114 (5.7) 266 (13)
30 92 1178 (39) 180 (6.0) 422 (14)
50 152 2024 (41) 310 (6.2) 736 (15)
75 227 3082 (41) 473 (6.3) 1127 (15)

100 302 4148 (41) 637 (6.4) 1520 (15)
200 602 8424 (42) 1293 (6.5) 3090 (15)
300 902 12770 (43) 1975 (6.6) 4665 (16)
400 1202 17157 (43) 2660 (6.6) 6248 (16)
500 1502 21615 (43) 3354 (6.7) 7831 (16)
750 2252 33179 (44) 5145 (6.9) 11812 (16)

1000 3002 45363 (45) 7005 (7.0) 15817 (16)

Note.Quantities in parentheses refer to average amounts per fragment. The cpu utilization (wall clock time
over cpu time) was in all cases above 98% for the setup and above 87% for SCF. The remaining percentage is
largely associated with the time spent on disk IO.

As can be seen in Fig. 1A, the time and disk space requirements show linear scaling to
a very good degree. The data points bend slightly away from the dotted line at highern
but this is far from showing a parabolic increase. This becomes clearer in the double loga-
rithmic plot (Fig. 1B), where all the data points are located very close to a line of slope 1,
signifying that the scaling is predominantly linear. Following the fitted curves in this figure
beyond the range of data points, a rough prediction for the crossover from linear (slope 1)
to quadratic (slope 2) scaling can be made. The solid curve which contains the quadratic
term begins to bend over to a slope 2 line. This transition starts to set in significantly at
n = 5×103 and is fully realized atn= 105. It is noted that the effective scaling at the largest
data point in this example,n= 1000 (3002 atoms), as estimated from the slope of the fitted
curve in the double logarithmic plot, is below 1.1, thus clearly within a predominantly linear
regime.

Two comments about these calculations are in order.

(1) The scaling calculations were performed on an essentially linear system as opposed
to a more bulky, three-dimensional structure. Obviously, calculations on such a system
would require larger computing times since more atoms would fall within any of the potential
cutoff radii. But as outlined above, only the “multipolar” atoms located outside the outermost
cutoff (RP) show quadratic scaling. Therefore calculations on three-dimensional structures
are expected to show similarO(N) scaling. On the other hand linear structures maximize
the proportion of “multipolar atoms”; hence the onset of quadratic scaling should occur
earlier (lowerN) as would otherwise be the case for bulkier structures.

(2) The division of the alkanes inton subsystems is not the most time-efficient choice
of fragmentation. Significant improvements in computing time can be achieved by using
fewer fragments, each describing more than one methylene group. With the choice of cutoff
parameters used, the optimum fragmentation pattern was found to be three methylene groups
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FIG. 1. (A) CPU-time in seconds for one SCF cycle and pre-SCF setup as well as disk space in megabytes
required for a series of linear alkanes CnH2n+2. In all plots, the measured data points are represented as boxes. The
solid curve is obtained by fitting the data points{Y, n} to an expression of the formY=a+ bn+ cn2. In order to
show the extent of quadratically scaling terms, the same function, with the quadratic term omitted, is displayed as
a dotted line. (B) The same data in double logarithmic form. In such a plot, the slope of the data corresponds to
the effective order of scaling. For clarity, the data for setup and disk usage in this plot have been vertically shifted
by two and four units, respectively.
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per fragment, resulting inn/3 fragments. In practice the optimum partitioning will be highly
dependent on the system at hand and the choice of cutoff parameters.

4.2. Annite Layered Silicate

Calculations on this material using a DVM single cluster model have been performed
recently by one of the authors with the objective of calculating Moessbauer hyperfine param-
eters [44]. Here, the same material is taken as a (moderately sized) example to study the effect
of fragment size (effectively controlled by cutoff parameterRF ) on computed properties.

The chemical composition of ideal annite is KFe3(AlSi3)O10(OH)2, with two formula
units in the crystal unit cell (spacegroupC2/m). Briefly, the structure consists of layers
made up of two opposing tetrahedral sheets of silicon/aluminium oxide attached to a sheet
of octahedrally coordinated iron atoms. Potassium atoms are located between these layers
to ensure charge neutrality [44].

Of the 44 atoms in the unit cell, 24 atoms are symmetry unique which, in this calculation,
are described using 22 fragments; two types of hydrogen atoms are in each case described in
the same fragment as the nearest oxygen atom. Three calculations (referred to as Models I,
II, and III) were performed, with atoms added as buffer atoms to fragments if they are within
a distanceRF of 6.0, 7.5, and 9.0 bohrs, respectively, to any reference atom of the fragment.
The truncation radii adopted, result, for example, in iron atom types being described by

Fe1O4(OH)2Fe6 (15 atoms)
Fe1O4(OH)2Fe6O2Si4O2O4 (27 atoms)

Fe1O4(OH)2Fe6O2Si4(OH)2O4O4(Si,Al)4O4 (41 atoms)

fragments, respectively (Fig. 2). Similar-sized fragments describe the other atom types. The
cutoff parametersRD andRP were set to 10 and 14 bohrs, respectively. Since these cutoff
distances are measured from any of the fragment atoms, the boundaries described by them
move in parallel with the fragment’s surface away from the reference atoms with increasing
fragment size; thus the effect of approximations to the effective potential (Eq. (11)) is also
reduced.

Calculations were performed using local spin density theory (LSDA) where ferromag-
netic alignment of Fe magnetic moments has been assumed. The basis set used is of a valence
double numerical type, with the frozen core approximation used for atomic orbitals up to

FIG. 2. Fragments used to describe iron atom types in three D&C calculations (Models I to III) on Annite.
These fragments were formed by adding to the iron (“reference”) atom in the center all atoms within a distance of
RF = 6.0, 7.5, and 9.0 bohrs, respectively.
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K-2p, Fe-3s, Si-1s, Al-1s, O-1s. Again, only spherically symmetric density fit functions
are used.

The total density of states (TDOS) and the iron weighted partial density of states (PDOS)
obtained in the three calculations are compared in Fig. 3. The energy ranges shown are

FIG. 3. Comparison of the density of states (DOS) for the layered silicate Annite was obtained using three
different fragment sizes (Model I: short dashed line; Model II: long dashed line; Model III: solid line; see text).
(A) Total density of states (TDOS); (B) iron partial density of states (PDOS). Energies are relative to the respective
Fermi levelE f . In the convolution, Lorentzian distributions of width 0.4 eV have been used.
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relative to the computed Fermi level (E f ) of−4.91,−3.67, and−3.53 eV for Models I, II,
and III, respectively.

Qualitatively, the DOS is characterized by iron states around the Fermi level, as can be
seen from the Fe-PDOS curves. The double peak structure in both spin components of
the iron PDOS is caused by the crystal field splitting of irond-states into states of local
symmetryt2g andeg in the (near-) octahedral crystal field. The DOS structure toward lower
energies is mainly of oxygen 2p (−10 to−5 eV) and oxygen 2s (−25 to−20 eV) character.
Potassium 3p and 3sstates are overlapped with the low-energy part of the respective oxygen
bands. Unoccupied silicon and aluminum 3s as well as iron 4s and 4p states produce the
band with an onset at+5 eV.

Comparison of the DOS diagrams obtained for the three models shows them to be very
similar in many aspects. Model II and III are nearly indistinguishable for occupied bands,
suggesting that the DOS has converged with respect to fragment size. However, even for the
smaller Model I, the overall appearence of the bands compares well and even some of the
more detailed peak structure of the larger models is nicely reproduced. The most notable
difference is an apparent shift of the DOS of Model I by about 1 eV to higher energies
relative to Model II and III, with the exception of the iron states which are not shifted. This
is probably largely due to the shift in the Fermi level between models I and II. The Fermi
level itself is determined by the positioning of the iron states, so that the shift in the DOS
diagram can be attributed to an increased energy of the iron states in models II and III as a
result of using larger fragments.

In Fig. 4, an electron density contour map calculated for Model III is displayed, centered
around one of the iron sites. With itsd-band located at the Fermi level, the density around
iron atoms should be most sensitive to fragment size effects. To illustrate the extent of these
changes, a density difference map between Model I and Model III densities is also presented
in the same figure. Comparison of the magnitudes of the contours in the two plots shows that
the effect of increased cluster size on the crystal density is very small indeed. The difference
between densities of Models II and III, which is not shown in Fig. 4, is even smaller.

In conclusion, the densities and DOS diagrams obtained for Annite in three calculations
using different fragment sizes are in good agreement with each other; good convergence
with respect to increasing fragment size has been reached. As far as these two particular
properties are concerned there seems not to be much advantage of increasing fragment sizes
beyond Model II.

4.3. Example 2: Protein 1 [Fe4S4] Ferredoxin

This protein structure was chosen as an example of a large molecular system. The objective
of this example is to show that a DFT calculation on a system of this size can be performed
using the present method.

The atomic structure used in this work was obtained from the Brookhaven Protein
Database under the entry 1ROF (Structure 1) and is based on solution-NMR data [45].
This protein is a small iron–sulfur electron carrier of the bacterial speciesThermotoga mar-
itima. It contains 845 atoms in 60 residues and includes a Fe4S4 cluster which is coordinated
by four cystine sulfide groups. By changing its oxidation state, this cluster is generally be-
lieved to be the primary carrier site for electrons. The structure used is that of the fully
oxidized form of Ferredoxin with formal Fe4S4 cluster charge of+3 [45].

For the calculation, the protein was divided into 260 fragments. Potential truncation radii
RF , RD, andRP were set to 6.0, 6.0, and 14.0 bohrs, respectively; this means in particular
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FIG. 4. Comparison of electron densities ˜ρ computed for Annite around an octahedral iron site using different
fragment sizes (Models I and III; see text). (A) The electron density map for Model III; (B) the density difference
map between Models I and III. Next to the central iron atom two coordinating OH groups are visible. Contour levels
are at magnitudes 0.001, 0.002, 0.004, . . . ,1.024 e/a3

0 with solid and dotted contours for positive and negative
values, respectively.
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FIG. 5. Electronic density of states computed for a proposed structure of the iron–sulfur proteinThermotoga
maritima1 [Fe4S4] ferredoxin. (A) The total density of states and (B) the local density of states of the complete
iron–sulfur cluster (including four cystein ligand sulfur atoms) overlaid with the contributions of the four iron
atoms. Energies are relative to the Fermi levelE f . In the convolution, Lorentzian distributions of width 0.4 eV
have been used.
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that atoms within a distanceRD less than 6 bohrs to any reference atom were added as buffer
atoms to a fragment. As for the alkanes or Annite calculations, a VDN basis set with frozen
core approximation and a spherical-only density fit function set were used. Calculations
were performed in the spin-restricted (LDA) framework. It should be noted that solvation
effects have not been considered in this work.

Upon startup of the calculation, convergence in the electron density proceeded steadily
but more slowly than in the case of the alkanes. This was primarily due to charge fluctuations
in the iron cluster. Convergence was achieved (RMS(1aAi )<10−6) after 54 SCF cycles in
total. This is in our experience a fairly typical number of cycles for a system that contains
transition metals in conjunction with partially filled bands at the Fermi level.

In Fig. 5, the computed total DOS and the Fe4S8-weighted DOS (including the ligand
sulfur atoms) for this protein are displayed. The total DOS here shows typical features of a
protein DOS (compared for instance with the tetrapeptide DOS in Ref. [4]). The iron cluster
DOS has its peak directly at the Fermi level, as expected, since these cluster states are the
electron carrier states of the protein. Nevertheless, the presence of a solvent will of course
have a significant effect on the electronic structure but the discussion of such effects would
certainly go beyond the scope of this paper.

5. CONCLUSIONS

The details of a divide-and-conquer implementation of the discrete variational method
have been described. By using comparatively coarse numerical integration grids in con-
junction with compact orbital and density basis sets, approximate electron densities for
large systems are obtained very efficiently and linearly scaling with system size over a wide
range. This was demonstrated using linear alkane chains CnH2n+2 for n up to 1000. For this
system, the onset of significant quadratical scaling was predicted to be well above several
thousand atoms. The convergence of electron densites and densities of states with respect
to increasing size of fragments was demonstrated using the example of the layered silicate
Annite. Finally, the method was applied to calculate the electronic density of states of an
845 atom protein.
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