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In this paper a novel density functional theory code is described that implements
Yang’'s divide-and-conquer approach in the framework of the discrete variational
method. The primary aim of the software is the rapid computation of approximate
electron densities and density of states for a given arrangement of atoms. By using
moderately sized grids and compact basis and density fit function sets, a high degree
of efficiency is achieved. Through the use of the example of linear alkane chains,
it is demonstrated that the performance of the method scales linearly with respect
to system size for up to more than 1000 atoms. Details of the implementation are
given where emphasis is placed on the approximations made and how linear scaling
is achieved. Finally, calculations on some example structures will be presented to
survey possible applications of the codeg 1998 Academic Press
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1. INTRODUCTION

Electronic structure calculations from first principles have come a long way over the |
25 years and are now, for small molecules, almost routine. However, for larger molec
of 100 atoms and more, the scaling of cpu-time with respect to system s@2é\t) and
higher makes calculations on such systems prohibitively expensive.

A major breakthrough was achieved when the divide-and-conquer (D&C) philosor
used in other areas of computational science (e.g., the eigenvalue problem [1]), was ar
by Yang [2—-6] to density functional theory (DFT). By dividing the system into subsystel
forwhich the Kohn—Sham equations are solved separately, D&C imposes a strict localizz
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constraint to the problem which formally reduces théN?®) scaling associated with the
building and diagonalization of the Hamiltonian matrix in®(N?) and O(N) scaling
processes, respectively. By further making use of the short-range nature of the exche
correlation interaction and the smoothness of the coulomb far-field [7], the Hamilton
matrix-build can also be made linearly scaling, such that an ovér@!l) scaling DFT
scheme results.

Yang’s practical implementation of this method [2, 3] employs the DMol approach [8]
solve the subsystem Kohn—Sham equations. Implementations of D&C based on Gaus
type orbitals (GTOs) with their advantage of largely analytical integrability are under de
opment [9, 10]. Significant progress has also been reported for strategies that are not
on D&C but use other means of imposing localization [11-16]. Recently, work has b
published which concentrates on making the evaluation of the Hamiltonian matrix elem
a linearly scaling process with the notion that this is the time-critical part in GTO-ba:
Hartree—Fock and DFT schemes for moderately large system sizes [17-23].

These implementations offer the prospect that accurate single point energy calcula
and possibly geometry optimizations using energy gradients will be possible for Iz
molecules in much the same way as they are at present for small molecules. How
in order to obtain reliable energies and gradients, it is paramount that errors arising 1
approximations introduced (e.g., in the evaluation of the coulomb potential or in the us
numerical integration schemes) are reduced to a minimum.

In contrast, if one were to put aside total energies and their gradients as targets
calculation, it has been shown that sufficiently accurate electron densities and densi
states (DOS) for direct analysis can be obtained efficiently using the discrete variati
method (DVM) [24—26], namely numerical integration of the Kohn—Sham equations o
moderately sized grids. Such densities (and quantities derived from them) are of cc
exceedingly useful in themselves: Concepts introduced and discussed for example by E
Parr, and others [27—30] can be used to assess properties such as the reactivity of the
under consideration.

The implementation of the D&C DFT approach presented in this work follows the sp
of DVM in that approximate electron densities for a given system are made the prirr
objective of a calculation. The accuracy required for the calculation of molecular ener
will be sacrificed for efficiency and a comparably aggressive level of approximation will
used while trying to retain meaningful densities and DOSs for direct analysis.

In particular, (1) compact numerical orbital basis sets will be used, (2) a simple h
achical model of approximations (controlled by user-defined distance cutoffs) makes
evaluation of the (Kohn—Sham) effective potential a linearly scaling process, (3) inte
tion is performed over comparatively coarse numerical grid$000 points/atom), and
(4) compact density fit basis sets (generally of s-type functions only) are employed. It
be demonstrated that such an approach will allow first principles electronic structure ce
lations on systems that would otherwise not be accessible by the more accurate apprc
listed above.

The following discussion begins with a summary of Yang’'s D&C method, which al
serves the purpose of introducing the terminology used in subsequent sections. Then, tl
plementation of this method in the framework of the discrete variational method will be in
duced. Finally, the performance characteristics of this implementation will be demonstr
using a variety of example systems, among them a linear alkane of 3002 atoms and a pi
of 845 atoms.
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2. BACKGROUND

In Kohn—Sham density functional theory [30, 31], the electron density is obtained
solving the one-particle eigenvalue problem in the effective potential

Vksl[p] = Vhuel + Veoul o] + Vel o] 1)

consisting of nuclear, coulombic, and exchange—correlation contributions, respectively
ing an orbital basis sdfy, }, the density is usually obtained in the form

1Y :ZZIOMUXMXV’ (2)
m v

wherep,, is the density matrix. In practice, for large systems, the computation and gen
handling of the density matrix using established methods become prohibitively expen:
However, this problem can be neatly and efficiently overcome by using Yang'’s divide-a
conquer DFT [2—6]. The essentials of D&C will be summarized in this section but sligh
reformulated to emphasize the role of what will be referred to in the following as the “den:
function” of an atom Apa(r; E):

pa(r; E) = Pap(r; E) = Y F(E —&)Palti > €

In this equation,F is the Fermi function at finite temperaturg; and y; are orbital
energies and wavefunctions, respectively; &hdis a suitable operator (see below) tha
partitions densities into atomic contributions. Thus, for a given, yet to be determined, Fe
energyE;, pa(r; E¢) represents the density associated with atom A. The total density
the system is then of course the superposition of the densities associated with all ator

p(r;Er) =Y palf; Ey). @
A

The divide-and-conquer method is based on the principledhéat E), as it would be
obtained for a particular atom A in a Kohn—Sham-type calculation on the entire syst
is well approximated by the atomic density functiefXr; E) obtained for the same atom
in a calculation carried out localized to a small “quantum” fragmemtf atoms (in the
following text a superscripted signifies a quantity associated with a fragment),

PA(r; E) >~ pa(r; B), (%)

where
Par: E) = Pap?(riE) = Y F(E — &) Palyf . )
i

Localization in this context means that the Kohn—Sham equations (for the potential g
in Eq. (1)) are solved using orbital basis functions sited only on a small number of atom
fragment) including atom A and other nearby (buffer [3]) atoms, which yields orhjtals
and densitiep® being limited in spatial extent to the fragment. In doing this, the (formally
O(N?) computational effort in diagonalizing the Hamiltonian matrix of the entire syste
is avoided and replaced with the linear scaling problem of diagonalldisgall fragment
matrices.
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Atom A will be referred to in the following as the “reference atom” of the fragmel
since its density function is used to approximate the density function of a system atom.
accuracy of this approximation is determined solely by the size of the fragment, i.e.,
number of buffer atoms used to shield the reference atoms from the surface of the fragr
Of course, more than one atom in a fragment can serve as a reference for a density fun

With atomic density functions obtained in this way for all atoms and with a knov
electron count\, the Fermi levelEs can be computed by requiring that the total densit
(Eg. (4)) integrates tde; thus

> (oA, En) = Na(Ef) = Ne, 7
A

A

whereN, is the number of electrons associated with atom A and the square brackgts
imply integration over all space. Knowing the Fermi level, the electron depsitpbtained
by Eg. (4) and a new effective potentiks (Eq. (1)) for the system can be constructec
this completes the SCF cycle in a divide-and-conquer DFT calculation.

It is instructive to remember that earlier embedded cluster schemes are based ol
very same principle of “localization.” In many applications of these methods, the atc
of a solid are described using a single, suitably chosen fragment of the solid (the clu
for which solid-like densities are obtained in the inside. The crystal potential in which
cluster equations are solved is constructed using the densities of atoms within the clus
areference (e.g., Ref. [32]). Thus one can think of Yang's D&C approach as a very ele
extension of the embedded cluster scheme to obtain the density functions for the atol
a large system, by simply using several (not just one) small clusters/fragments as so
of reference for atomic densities.

A short comment on the partition operax used in Eq. (3) is in order. Two forms have
been introduced: In the original formulation of D&C [2], a smooth partition funcEqarr)
has been used, while in the later “density matrix” D&C [6], partitioning was based ol
Mulliken-type scheme; the latter will be used here. In principle, the partitioning is arbitr:
and can take any form (as long 23, P, =1). However, the choice affects the quality of
the localizing approximation in Eq. (5) when fragment sizes are smaller.

With the principles of Yang's D&C DFT summarized, the practicalities of an impleme
tation using the discrete variational method can be described.

3. IMPLEMENTATION IN THE FRAMEWORK OF THE DVM

In this implementation of divide-and-conquer DFT, calculations on individual fra
ments are performed using the discrete variational method [24—26]; this part of the pre
code thus resembles the original DVM code and the core of the now highly sophistic:
Amsterdam Density Functional (ADF) package [33]. Briefly, all integrations are perform
numerically over a grid of suitably chosen integration points. The densities obtained
least squares fitted to a set of density fit functions which allows a rapid evaluation of
coulombic potential [34].

In the following sections, those parts of the DVM that have to be modified to be suita
and efficientin a D&C calculation on a large system are described. In particular, the effic
construction of the effective Kohn—Sham potential at fragment integration points and
density fitting procedure will be discussed.



74 WARSCHKOW, DYKE, AND ELLIS

3.1. Representation of the Density

First, a suitable representation for the electron density of the entire system is requ
In the original DVM two types of representations are used—first, a density matrix re
sentation (Eq. (2)) via the orbital basis set and second, a linear expansion in terms of
of density (fit) functiond i} centered on all atoms A [34],

o= ZZaAi fai. (8)
A

As discussed before, the density matrix representation is cumbersome for large sys
and is not really necessary as will become clear later. The density of the entire sy:s
will therefore be represented in the form of Eq. (8) only; this shifts the objective of t
calculation toward the determination of the expansion coefficigntg. In the following
text, symbols for densities in the fit function representation will carry a tilde (e)go ~
distinguish them from other forms.

The advantage of having the density in the form of Eq. (8) is that the coulomb potenti:
straightforwardly accessible using the coulomb potentials of fit functiggs [ fail} [34]:

Veoul [Z’] = Z Z aai Vcoul[ fAi]~ (9)
A i

The coulomb potentials of fit functions are in turn easily computed using one-dimensic
integration [34].

Also it should be noted that in this form, a natural partitioning of the density (and
coulomb potential) into atomic contributions { and Veou[ 0 ]) is achieved by assigning
to an atom the portion that is described by the fit functions located on it:

5A = Z aai fai Vcoul[ﬁA] = Z aai Vcoul[ fAi]- (10)

Through the use of a suitable integration over the atomic densities, partial ck@ges
and higher multipolar moments can be obtained for all atoms. It should be realized tha
number of electron&N o = (p a)) assigned to an atom in this way is generally not identic:
to that assigned to it as part of the D&C approdthn(Eg) in Eq. (7)). The equality of
these two charges will become an important constraint later in this discussion.

3.2. Evaluation of the Fragment’'s Kohn—Sham Potential

The electron density of the system gives rise to an effective (Kohn—Sham) potel
Vks (EqQ. (1)) which has to be evaluated for all fragments employed. However, with
density and its coulomb potential in the form of Egs. (8) and (9), this is stilDaN?)
process (the underlying interactions are pairwise) and simplifications are required to n
the computation o¥/ks efficient and more favorably scaling with system size.

The evaluation of the Coulomb potential poses particular problems due to its long-re
nature, and (linear scaling) techniques for its accurate evaluation are currently inter
pursued [7, 17].

In the present method, a comparatively simple (and certainly less accurate) scher
approximations depending on the separation of interacting atoms is adopted. Howevel
feltthat such an approach is more consistent with the level of approximation made elsew
in this implementation (e.g., grid error, basis, and fit set incompleteness).
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A series of truncation rad{iRr, Rp < Rp), defined in the input of the code, partition for
each fragment the atoms of the system into four sets (fragment d&msiffuse atoms
{D}, point atomg P}, and “leftovers”{M}—which in the following text are referred to as
multipolar atoms). Increasing levels of approximation are used to evaluate the Kohn—S
potentialVks created by the atoms in these sets which are subsequently combined to
the total potential

Vks(r) = Vip,ry (1) + Vipy () + Vimy (). (11)

Fragment atom¢F}. As discussed before, fragment atoms are those atoms that c:
basis functions in a localized quantum calculation. The fragment initially contains o
the atoms that serve as reference atoms for the construction of the system density :
extended by all atoms that are within a distanc&pfto any of the reference atoms. Yang
[3] refers to the atoms added in this way as “buffer atoms.”

Diffuse atomgD}. All atoms that are within a distance &p of any fragment atom
form the set of diffuse atom{®}. The atoms of the fragment and diffuse set are represent
as containing a nuclear point charge surrounded by a diffuse cloud of electrons. This
tron density gives rise to an exchange/correlation potential. Hence, the effective pote
(Eq. (1)) due to this subset of atoms is evaluated exactly. An additional approximate
tential is introduced to simulate the effect of orbital orthogonality between fragment atc
and surrounding density. In principle, this can be achieved in a simple way by trunca
the Kohn—Sham potential within a preset radius of the “embedding” diffuse atoms 1
constant potential close to the Fermi level of the system [35]. Here, the electron dens
of the fragment and the diffuse seft £, andg;p,) are used to compute the somewhat mor
elaborate non-additive kinetic energy potential correct®anagal 02, 1] introduced by
Cortona [36, 37] based on the Thomas—Fermi kinetic energy (TF-KE) functional (see
Ref. [38] and comment [39]).

The full potential due to fragment and diffuse atoms is thus given by

Zp ~ ~ ~ .
Vip,ry(r) = Z {_ TN + Veoul P al | + Ve [A(py + Biry] + ViFnadd[Bir) oy

Ae(D,F} A 12)
where

. 1 - - -
Ve nadd|A(Fy» Aioy) = 5(3772)2/3[(10{F} + P{D})2/3 - (P{F})Z/B} (13)

and

/5{F} = Z O /5{0} = Z e (14)

Ac{F} Ae{D}

The density and coulomb potentigl 5, Veoul 0 4]) @ssociated with an atom are given by
their expansions (Eq. (10)) into density fit functions and their potentials, respectively.

Point atoms{P}. Atoms that are at distances betwdgg and Rp from any fragment
atom are represented as point atoms. In essence, it is assumed that the electron c
associated with these atoms does not reach the region of the fragment, which means tt
coulomb potential is effectively that of a point multipole. Currently, a further approximati
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is made of retaining only the point charge term in the potential, neglecting higher multipo
The potential is then given by

Ve =— 3 A (15)

AT [r —ral

Multipolar atoms{M}. The coulombic potential due to all atoms that are at distanc
larger thanRp from any fragment atom, and thus not represented in any of the otl
atom sets, is assumed to be nearly constant and therefore representable using a tru
multipolar expansion around a suitable cemteof the fragment:

Imax

Vi (I = rol, ) =Y Mi Yim(Q)Ir —rol'. (16)
Im

The multipolar momentd, in this expansion are obtained by summation over tt
charge weighted contributions of the single atoms. Again, the atoms are assumed
point charges:

Mml = Z QAMmI,A‘ (17)
Ae{M}

The multipolar moment$/, o generated by a unit charged atom A aroupdre de-
pendent only on the relative position of the atom. They are conveniently computed be
SCF commences. In the case of a periodic system, the crystal (Madelung) potential is
represented in this form, which results in a set of crystal momiets, for each atom in
the asymmetric unit. Currently, moments uptax= 2 are used.

In the practical implementation, various function values at integration points, neede
the evaluation of the effective potential, are computed only once before SCF and st
on disk. This includes the density fit functiofig; and their coulomb potentialéq,( fail,
unit point charge potentials (for Eq. (15)) as well as the multipolar potential functic
(Yim|r —rol") for Eq. (16). With these data readily available from disk, the evaluation of t
potential (Egs. (1) and (11)) in integration poifités(ri)} during each SCF cycle proceeds
rapidly. Indeed, the subsequent numerical integration of the potential and the symmet
basis functions (also read from disk) over the drid w; } to form the Hamiltonian

Hy = Tg + /eru(r)VKS(r)Xv(r)

~ T 4> Wi () Vis() X (1) (18)

usually dominates this part of the SCF proceddrg i§ the kinetic energy matrix).
Looking at the scaling properties of this part of the method with respect to increas
system size, it should be noted that above a certain critical system size, the numb
atoms located within any of the three cutoff radii (i.e., atom $Ets {D}, {P}) remains
constant. Hence the number of terms to be evaluated for these atoms is constant ai
computational effort of calculating these terms for all fragments becomes linearly scal
The only exceptions to this are the terms associated with the “multipolar atoms” out:
the outermost cutofRp (atom sefM}) whose number increases with system size; thus
evaluation of this part of the potentidli,, specifically the sumin Eqg. (17)) for all fragments
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scales quadratically. In principle, this part of the potential can also be made linearly sce
using a fast multipole approach [7]. However, since the multipolar part of the potentic
calculated rapidly in comparison with the other parts, its quadratic scaling is not expe
to become significant for practical system sizes (see performance discussion below).

3.3. Density Fitting

With the Fermi levelE; computed for the system (Eq. (7)), the density for the entil
system is in principle available via the density functions defined in Egs. (3) and (4), wt
would eventually yield a density matrix representation (Eq. (2)) of the system density
The density expansion coefficierts,; } of Eq. (8) could then be obtained by least square
fitting, as is standard practice in the standard DVM [34]. However, such a least squ
fitting approach would result in a®(N?®) scaling process (since it requires the inversio
of a O(N) sized matrix) and a linear scaling alternative is required. Using a localizat
ansatz similar to the one used in Yang's D&C, such an alternative has been describe
St. Amant and co-workers [9, 10] for the LCGTO-DFT method [40, 41] and the appro:
in the following can to some extent be considered an adaptation to the DVM. Howe
unlike St. Amant’s fitting procedure, the present method will not require a density ma
representation (Eg. (2)) of the entire system density. Instead, fitting will be based onl
the densitiep* obtained for all the fragments as a result of the D&C method.

This begins with Eq. (8) being least squares fitted to fragment densities,

Zf Ef W.

giving rise to a complete set of fit expansion coefficiefaty } for each fragment. Then,
the expansion coefficients found in this way for the reference atoms of a fragment
taken as approximations for those obtained if the density fit were performed on a glok
represented density. Thus, the approximation Eg. (5) translates into

: 19)

aa ~ ay;. (20)

In this way expansion coefficienta;} for all atoms of the system can be obtained b
referencing appropriate atoms in the set of fragments.

Because fragment densitigg¢ are localized to small regions of the system only fi
functions located on atoms that are either part of or close to the fragment will be significa
involved in the expansion. Since one is interested only in the expansion coefficients obte
for reference atoms in the inside of the fragment, it is a reasonable step to truncate t
function representation @f* to involve functions located on fragment atoms only:

=3 Sy fa (21)
Ae{F} i

This truncation results in the number of fit functions involved in a fragment least sque
fit to be (asymptotically) constant with system size, which means that the density fit fol
fragments will be a linearly scaling process.

An important constraint in the fragment fitting procedure is the conservation of cha
for the entire system. This can be conveniently achieved by requiring that the fitted del
associated with a reference atom@( Eq. (10)) integrates to the same number of electrol
that has been assigned to it earlier in Eq. (7)—narhilyE ¢ ), the integrated atomic density
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function at the Fermi leveEs:
(Pa) = ZaOA‘i(fAi) =Na VAe({R}L (22)
i

This is achieved by augmenting the least squares fit of Eq. (21) to Eqg. (19) for a fragn
by a constraint of the form Eq. (22) for each reference atom defined by it. Non-refere
(buffer) atoms of a fragment are not constrained. The Lagrangian of the least squares
then given by

L= (0" = 5% — > *a((Fa) — Na). (23)

Ac{R}

Minimization of L for all fragmentsx, which equates to solving a set of linear equation:
yields the expansion coefficientaj;} which are used in conjunction with approximatior
Eq. (20) to construct the fit function representation of the system density (Eq. (8)).

During the SCF procedure, an updating strategy is required to ensure convergence
electron density (i.e., coefficien{sy;}) to a stationary solution. In this implementation,
the convergence is reached when changes in the density expansion coeffaightse
below a preset threshold. To accelerate convergence, Pulay’s DIIS [42, 43] extrapol
procedure is applied to generate updated coefficients for the next cycle.

With this, the core of the present “divide-and-conquer” implementation of the discr
variational method has been described. In the following section, some of the more prac
aspects are discussed.

3.4. Use of Symmetry

In this implementation of the divide-and-conquer approach, the use of symmetry
in at two different levels. First, symmetry in each fragment is used to factorize the Kol
Sham matrix equation and to generally reduce the work load as is standard practice in
guantum chemical codes. More importantly, symmetries in the global system can be us
much advantage. Because the system density is required to be totally symmetric, the a
density of only one atom in a set of symmetry equivalent atoms needs to be computec
fragment calculation [5]. The transfer of these densities to symmetry-related sites typic
requires a rotation of the local coordinate system.

To use this symmetry in practice, the only information required in the input is to assigr
atomsto sets of equivalent atoms (referred to as a potential type [32]). The relative orient
oftwo atomsin such a set can then be worked out using the position and potential type of
respective three nearest (nonplanar) neighbors. The specification of the point or space
ofthe system and its symmetry operationsis notrequired. This greatly simplifies calculat
on symmetric systems with or without periodicity; a particular advantage is that spe
symmetries (e.g., helical geometries) can be used just as easily as any other symmet

3.5. Basis Sets

One of the advantages of all-numerical integration schemes is that no restrictions ol
type and shape of basis functions are imposed. Highly compact, yet accurate orbital basi
are obtained if they are based on wavefunctions from numerical atomic density functi
calculations [34]. The functions used in the following calculations are generally of vale
double numerical (VDN) type. For core basis functions, the core atomic functions of
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atom (in its reference state) are used, and for valence basis functions, atomic functio
the atom in two different oxidation states are used. For atoms such as C, N, O, al
in covalent environments, these oxidation states are the single positive and negative
respectively. For atoms in ionic environments, e.g., Siin silicates, the basis set is constrt
from atomic functions of the fullySi**) and partially(Si®*) ionic atom. Density fit sets
are also based on atomic orbital calculations. Typically, density fit functions are obtaine
taking spherically averaged and squared orbital basis functions for the radial part augms
with the appropriate spherical harmonic for the angular part.

4. PERFORMANCE

A series of calculations were carried out to establish various performance characters
of the code. The example of a linear alkane chain is used to demonstrate that cpu
and disk usage do indeed scale linearly with system size over a wide range. The ¢
of increasing fragment size on computed properties is studied for a solid silicate struc
(Annite). Finally a trial run is presented to compute the electronic structure of the 845 a
proteinThermotoga maritimd. [F&S,] Ferredoxin [45].

4.1. Linear Alkane Chains

To test how the performance of the code scales with system size, a seniedkaihes
CnHani2 were constructed with ranging from 2 to 1000. The alkane chains are linear
stretched in space (all CCCC dihedral angles aré)18@dth bond lengthsl(CC)= 1.54A
andd(CH) = 1.07A and anglest(CCC) = 1095°. Although these structures belong to the
Coh or Gy, point groups (depending on whetheis even or odd), no use of this symmetry
is made in the following timing calculations to make them representative of similar but |
symmetric systems.

A valence double numerical basis set is used with carlsmriitals kept frozen during
the SCF procedure. The density fit set consists-fifnctions only, based on spherically
averaged squares of selected basis functions. This results in four and two fit functions
and H atoms, respectively. The alkanggig,, » are divided intan fragments, where each
fragment serves as a reference for one carbon atom and the two hydrogen atoms att
to it. In addition to these reference atoms, the fragment includes the nearest two meth
groups in each direction as buffer atorii®- ~ 6 bohrg. The other truncation radiRp
and Rp (defined in the text above) were set to 10 and 20 bohrs, respectively. With tr
parameters, a typical fragment in the center of an alkane contains 15 fragment atom
diffuse atoms, and 24 point ions. The other atoms of the system are represented usir
multipolar expansion (Eqg. (16)) where an upper lility = 2 has been adopted. Here 998¢
integration points are used to evaluate the Hamiltonian matrix elements of this fragme

The timing calculations were performed in single-processor dedicated mode on an
Power Challenge (75-MHz R8000 processors) computer. Generally, the calculations
not run to full convergence and were stopped after the time was taken for the first SCF ¢
However, to confirm that the system does converge, alkanesnwtth00 500 and 1000
were run to full self-consistency (RM8&a,;) < 107% and MAX(Aaaj) < 1073). For these
examples, no notable effect of system size on the rate of convergence could be det
Then =1000 alkane, for example, met the convergence criterion after 11 cycles.

Selected CPU times and disk space requirements are displayed in Table 1. Average
per fragment are given in parentheses. The same data are displayed graphically in Fif
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TABLE 1
CPU Times for (pre-SCF) Setup and One SCF Cycle as well as Disk Space Required for a
Series of Linear Alkanes G,H .., Divided into n Fragments

n Atoms Setup/s SCF-cycle/s Disk/MB

2 8 19 (10) 3(2) 5(3)

5 17 123 (25) 19 (4) 35(7)
10 32 330 (33) 50 (5) 106 (11)
20 62 755 (38) 114 (5.7) 266 (13)
30 92 1178 (39) 180 (6.0) 422 (14)
50 152 2024 (41) 310 (6.2) 736 (15)
75 227 3082 (41) 473 (6.3) 1127 (15)

100 302 4148 (41) 637 (6.4) 1520 (15)
200 602 8424 (42) 1293 (6.5) 3090 (15)
300 902 12770 (43) 1975 (6.6) 4665 (16)
400 1202 17157 (43) 2660 (6.6) 6248 (16)
500 1502 21615 (43) 3354 (6.7) 7831 (16)
750 2252 33179 (44) 5145 (6.9) 11812 (16)
1000 3002 45363 (45) 7005 (7.0) 15817 (16)

Note.Quantities in parentheses refer to average amounts per fragment. The cpu utilization (wall clock
over cpu time) was in all cases above 98% for the setup and above 87% for SCF. The remaining percent
largely associated with the time spent on disk IO.

As can be seen in Fig. 1A, the time and disk space requirements show linear scalil
a very good degree. The data points bend slightly away from the dotted line at high
but this is far from showing a parabolic increase. This becomes clearer in the double |
rithmic plot (Fig. 1B), where all the data points are located very close to a line of slope
signifying that the scaling is predominantly linear. Following the fitted curves in this figt
beyond the range of data points, a rough prediction for the crossover from linear (slor
to quadratic (slope 2) scaling can be made. The solid curve which contains the quac
term begins to bend over to a slope 2 line. This transition starts to set in significantl
n = 5x 10% and is fully realized ah = 1CP. It is noted that the effective scaling at the larges
data point in this exampl@&,= 1000 (3002 atoms), as estimated from the slope of the fitt
curve in the double logarithmic plot, is below 1.1, thus clearly within a predominantly line
regime.

Two comments about these calculations are in order.

(1) Thescaling calculations were performed on an essentially linear system as opp
to a more bulky, three-dimensional structure. Obviously, calculations on such a sys
would require larger computing times since more atoms would fall within any of the poten
cutoff radii. But as outlined above, only the “multipolar” atoms located outside the outernr
cutoff (Rp) show quadratic scaling. Therefore calculations on three-dimensional structi
are expected to show simil&@(N) scaling. On the other hand linear structures maximiz
the proportion of “multipolar atoms”; hence the onset of quadratic scaling should oc
earlier (lowerN) as would otherwise be the case for bulkier structures.

(2) The division of the alkanes intosubsystems is not the most time-efficient choic
of fragmentation. Significant improvements in computing time can be achieved by us
fewer fragments, each describing more than one methylene group. With the choice of ¢
parameters used, the optimum fragmentation pattern was found to be three methylene g
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FIG. 1. (A) CPU-time in seconds for one SCF cycle and pre-SCF setup as well as disk space in mega
required for a series of linear alkanegHG, .. In all plots, the measured data points are represented as boxes.
solid curve is obtained by fitting the data poifi¥ n} to an expression of the forivi=a + bn+ cn?. In order to
show the extent of quadratically scaling terms, the same function, with the quadratic term omitted, is display
a dotted line. (B) The same data in double logarithmic form. In such a plot, the slope of the data correspor
the effective order of scaling. For clarity, the data for setup and disk usage in this plot have been vertically st
by two and four units, respectively.
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per fragment, resulting in/3 fragments. In practice the optimum partitioning will be highly
dependent on the system at hand and the choice of cutoff parameters.

4.2. Annite Layered Silicate

Calculations on this material using a DVM single cluster model have been perforn
recently by one of the authors with the objective of calculating Moessbauer hyperfine pa
eters [44]. Here, the same material is taken as a (moderately sized) example to study the
of fragment size (effectively controlled by cutoff parameRe) on computed properties.

The chemical composition of ideal annite is kKE&ISi3)O;9(OH),, with two formula
units in the crystal unit cell (spacegro@®/m). Briefly, the structure consists of layers
made up of two opposing tetrahedral sheets of silicon/aluminium oxide attached to a <
of octahedrally coordinated iron atoms. Potassium atoms are located between these
to ensure charge neutrality [44].

Of the 44 atoms in the unit cell, 24 atoms are symmetry unique which, in this calculati
are described using 22 fragments; two types of hydrogen atoms are in each case descri
the same fragment as the nearest oxygen atom. Three calculations (referred to as Mo
I, and IIl) were performed, with atoms added as buffer atoms to fragments if they are wif
adistanceRr 0f 6.0, 7.5, and 9.0 bohrs, respectively, to any reference atom of the fragm
The truncation radii adopted, result, for example, in iron atom types being described b

Fe O4(OH)2Fes (15 atoms
Fe 04(0OH),Fe50,Si,0,04 (27 atoms
Fe,04(0OH)oFe50,Sis (OH)20404(Si, Al)404 (41 atom$

fragments, respectively (Fig. 2). Similar-sized fragments describe the other atom types
cutoff parameterfp and Rp were set to 10 and 14 bohrs, respectively. Since these cut
distances are measured from any of the fragment atoms, the boundaries described by
move in parallel with the fragment’s surface away from the reference atoms with increa:
fragment size; thus the effect of approximations to the effective potential (Eq. (11)) is
reduced.

Calculations were performed using local spin density theory (LSDA) where ferrom
netic alignment of Fe magnetic moments has been assumed. The basis setusedis ofav
double numerical type, with the frozen core approximation used for atomic orbitals u

H
0]

Model 1 Model 11 Model IIT

FIG. 2. Fragments used to describe iron atom types in three D&C calculations (Models | to Ill) on Ann
These fragments were formed by adding to the iron (“reference”) atom in the center all atoms within a distan
R =6.0, 7.5, and 9.0 bohrs, respectively.
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K-2p, Fe-3, Si-1s, Al-1s, O-1s. Again, only spherically symmetric density fit functions
are used.

The total density of states (TDOS) and the iron weighted partial density of states (PD
obtained in the three calculations are compared in Fig. 3. The energy ranges show
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FIG. 3. Comparison of the density of states (DOS) for the layered silicate Annite was obtained using tl
different fragment sizes (Model I: short dashed line; Model II: long dashed line; Model lII: solid line; see te
(A) Total density of states (TDOS); (B) iron partial density of states (PDOS). Energies are relative to the respe
Fermi levelE;. In the convolution, Lorentzian distributions of width 0.4 eV have been used.
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relative to the computed Fermi levet () of —4.91,—3.67, and-3.53 eV for Models |, Il,
and Ill, respectively.

Qualitatively, the DOS is characterized by iron states around the Fermi level, as ca
seen from the Fe-PDOS curves. The double peak structure in both spin componer
the iron PDOS is caused by the crystal field splitting of itbstates into states of local
symmetrytyg andey in the (near-) octahedral crystal field. The DOS structure toward low
energies is mainly of oxygen® —10 to—5 eV) and oxygen2(—25 to—20 eV) character.
Potassium B and 3 states are overlapped with the low-energy part of the respective oxyt
bands. Unoccupied silicon and aluminumas well as iron 4 and 4p states produce the
band with an onset at5 eV.

Comparison of the DOS diagrams obtained for the three models shows them to be
similar in many aspects. Model Il and Il are nearly indistinguishable for occupied bar
suggesting that the DOS has converged with respect to fragment size. However, even f
smaller Model I, the overall appearence of the bands compares well and even some «
more detailed peak structure of the larger models is nicely reproduced. The most no
difference is an apparent shift of the DOS of Model | by about 1 eV to higher energ
relative to Model Il and 111, with the exception of the iron states which are not shifted. Tl
is probably largely due to the shift in the Fermi level between models | and Il. The Fe
level itself is determined by the positioning of the iron states, so that the shift in the D
diagram can be attributed to an increased energy of the iron states in models Il and IlI
result of using larger fragments.

In Fig. 4, an electron density contour map calculated for Model Ill is displayed, cente
around one of the iron sites. With isband located at the Fermi level, the density aroun
iron atoms should be most sensitive to fragment size effects. To illustrate the extent of t
changes, a density difference map between Model | and Model Il densities is also prese
in the same figure. Comparison of the magnitudes of the contours in the two plots shows
the effect of increased cluster size on the crystal density is very smallindeed. The differ
between densities of Models Il and IIl, which is not shown in Fig. 4, is even smaller.

In conclusion, the densities and DOS diagrams obtained for Annite in three calculat
using different fragment sizes are in good agreement with each other; good converg
with respect to increasing fragment size has been reached. As far as these two part
properties are concerned there seems not to be much advantage of increasing fragmer
beyond Model II.

4.3. Example 2: Protein 1 [FgSy] Ferredoxin

This protein structure was chosen as an example of alarge molecular system. The obj
of this example is to show that a DFT calculation on a system of this size can be perfor
using the present method.

The atomic structure used in this work was obtained from the Brookhaven Pro
Database under the entry 1ROF (Structure 1) and is based on solution-NMR data
This protein is a small iron—sulfur electron carrier of the bacterial sp&tieenotoga mar-
itima. It contains 845 atoms in 60 residues and includes,&fauster which is coordinated
by four cystine sulfide groups. By changing its oxidation state, this cluster is generally
lieved to be the primary carrier site for electrons. The structure used is that of the f
oxidized form of Ferredoxin with formal &, cluster charge o#3 [45].

For the calculation, the protein was divided into 260 fragments. Potential truncation r
Re, Rp, andRp were setto 6.0, 6.0, and 14.0 bohrs, respectively; this means in partict
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FIG.4. Comparison of electron densitipsdmputed for Annite around an octahedral iron site using differer
fragment sizes (Models | and IlI; see text). (A) The electron density map for Model 111; (B) the density differer
map between Models | and 1. Next to the central iron atom two coordinating OH groups are visible. Contour le
are at magnitudes.001, 0.002 0.004, ..., 1.024 e/a3 with solid and dotted contours for positive and negative
values, respectively.
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FIG.5. Electronic density of states computed for a proposed structure of the iron—sulfur gro&gmotoga
maritimal [Fe,S,] ferredoxin. (A) The total density of states and (B) the local density of states of the compl
iron—sulfur cluster (including four cystein ligand sulfur atoms) overlaid with the contributions of the four ir
atoms. Energies are relative to the Fermi lelzel In the convolution, Lorentzian distributions of width 0.4 eV
have been used.
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that atoms within a distand®, less than 6 bohrs to any reference atom were added as bu
atoms to a fragment. As for the alkanes or Annite calculations, a VDN basis set with fro
core approximation and a spherical-only density fit function set were used. Calculat
were performed in the spin-restricted (LDA) framework. It should be noted that solvat
effects have not been considered in this work.

Upon startup of the calculation, convergence in the electron density proceeded ste
but more slowly than in the case of the alkanes. This was primarily due to charge fluctua
in the iron cluster. Convergence was achieveMI§ Aax;) < 10°°) after 54 SCF cycles in
total. This is in our experience a fairly typical number of cycles for a system that conte
transition metals in conjunction with partially filled bands at the Fermi level.

In Fig. 5, the computed total DOS and the;Bgweighted DOS (including the ligand
sulfur atoms) for this protein are displayed. The total DOS here shows typical features
protein DOS (compared for instance with the tetrapeptide DOS in Ref. [4]). The iron clu.
DOS has its peak directly at the Fermi level, as expected, since these cluster states &
electron carrier states of the protein. Nevertheless, the presence of a solvent will of cc
have a significant effect on the electronic structure but the discussion of such effects w
certainly go beyond the scope of this paper.

5. CONCLUSIONS

The details of a divide-and-conquer implementation of the discrete variational met
have been described. By using comparatively coarse numerical integration grids in
junction with compact orbital and density basis sets, approximate electron densitie:
large systems are obtained very efficiently and linearly scaling with system size over a\
range. This was demonstrated using linear alkane chaidg,C, for n up to 1000. For this
system, the onset of significant quadratical scaling was predicted to be well above se
thousand atoms. The convergence of electron densites and densities of states with r
to increasing size of fragments was demonstrated using the example of the layered si
Annite. Finally, the method was applied to calculate the electronic density of states ©
845 atom protein.
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